DeepDive: A Data Management System for Machine Learning Workloads

Many pressing questions in science are macroscopic: they require scientists to consult information expressed in a wide range of resources, many of which are not organized in a structured relational form. Knowledge base construction (KBC) is the process of populating a knowledge base, i.e., a relational database storing factual information, from unstructured inputs. KBC holds the promise of facilitating a range of macroscopic sciences by making information accessible to scientists. One key challenge in building a high-quality KBC system is that developers must often deal with data that are both diverse in type and large in size. Further complicating the scenario is that these data need to be manipulated by both relational operations and state-of-the-art machine-learning techniques. My research focuses on building a data management system for machine learning workloads…

Link to Full Article: DeepDive: A Data Management System for Machine Learning Workloads

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!