Machine Learning for Geophysical Applications

Date(s): Oct 19, 2016 – 2:00pm Location: Booker Conference Room Speaker(s): Peter Gerstoft Abstract: Machine learning has emerged as a promising tool to analyze massive amount of data. ML has demonstrated impressive results in non-physical sciences. ML has solid footing in statistics and signal processing. In this talk I will highlight three machine learning applications in geophysics: Graph theory: A model-free technique is used to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed. We use the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test-statistic.…

Link to Full Article: Machine Learning for Geophysical Applications

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!