Special Machine Learning Seminar

The objective in extreme multi-label classification is to learn a classifier that can automatically tag a data point with the most relevant subset of labels from a large label set. Extreme multi-label classification is an important research problem since not only does it enable the tackling of applications with many labels but it also allows the reformulation of ranking and recommendation problems with certain advantages over existing formulations. Our objective, in this talk, is to develop an extreme multi-label classifier that is faster to train and more accurate at prediction than the state-of-the-art Multi-label Random Forest (MLRF) algorithm [Agrawal et al. WWW 13] and the Label Partitioning for Sub-linear Ranking (LPSR) algorithm [Weston et al. ICML 13]. MLRF and LPSR learn a hierarchy to deal with the large number of…

Link to Full Article: Special Machine Learning Seminar

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!