# This R script will run on our backend. You can write arbitrary code here! # Many standard libraries are already installed, such as randomForest library(randomForest) library(ggplot2) # The train and test data is stored in the ../input directory set.seed(1) train <- read.csv(“../input/train.csv”, stringsAsFactors=FALSE) test <- read.csv(“../input/test.csv”, stringsAsFactors=FALSE) extractFeatures <- function(data) { features <- c(“Pclass”, “Age”, “Sex”) fea <- data[,features] fea$Age[is.na(fea$Age)] <- -1 fea$Sex <- as.factor(fea$Sex) return(fea) } rf <- randomForest(extractFeatures(train), as.factor(train$Survived), ntree=100, importance=TRUE) submission <- data.frame(PassengerId = test$PassengerId) submission$Survived <- predict(rf, extractFeatures(test)) write.csv(submission, file = “1_random_forest_r_submission.csv”, row.names=FALSE) imp <- importance(rf, type=1) featureImportance <- data.frame(Feature=row.names(imp), Importance=imp[,1]) p <- ggplot(featureImportance, aes(x=reorder(Feature, Importance), y=Importance)) + geom_bar(stat=”identity”, fill=”#53cfff”) + coord_flip() + theme_light(base_size=20) + xlab(“”) + ylab(“Importance”) + ggtitle(“Random Forest Feature Importancen”) + theme(plot.title=element_text(size=18)) ggsave(“2_feature_importance.png”, p) This script has been released under the Apache…

Link to Full Article: PclassAgeSex.r

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!