Study examines use of deep machine learning for detection of diabetic retinopathy The JAMA …

In an evaluation of retinal photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy, according to a study published online by JAMA. Among individuals with diabetes, the prevalence of diabetic retinopathy is approximately 29 percent in the United States. Most guidelines recommend annual screening for those with no retinopathy or mild diabetic retinopathy and repeat examination in 6 months for moderate diabetic retinopathy. Retinal photography with manual interpretation is a widely accepted screening tool for diabetic retinopathy. Automated grading of diabetic retinopathy has potential benefits such as increasing efficiency and coverage of screening programs; reducing barriers to access; and improving patient outcomes by providing early detection and treatment. To maximize the clinical utility of automated grading, an…


Link to Full Article: Study examines use of deep machine learning for detection of diabetic retinopathy The JAMA …

Pin It on Pinterest

Share This

Join Our Newsletter

Sign up to our mailing list to receive the latest news and updates about homeAI.info and the Informed.AI Network of AI related websites which includes Events.AI, Neurons.AI, Awards.AI, and Vocation.AI

You have Successfully Subscribed!